Документ подписан простой электронной подписью

Информация о владельце: МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРА-

Должность: Ректор ции

Дата подписания: 23.11.2023 13:39:05
Уникальный прегодиненский университет

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc имени академика М.Д. Миллионщикова

РАБОЧАЯ ПРОГРАММА

дисциплины

«ФИЗИКА»

Направление подготовки

13.03.01 Теплоэнергетика и теплотехника

Направленность (профили)

«Тепловые электрические станции»

«Энергообеспечение предприятий»

Квалификация

Бакалавр

Год начала подготовки

2021

1. Цель и задачи дисциплины

Целью изучения дисциплины «Физика» является создание у студентов основ широкой теоретической подготовки в области физики, позволяющей ориентироваться в потоке научной и технической информации и обеспечивающей им возможность использования новых физических принципов в тех областях техники, в которых они специализируются. Основными задачами курса физики в вузе являются:

- формирование у студентов научного мышления и современного естественнонаучного мировоззрения, в частности, правильного понимания границ применимости различных физических понятий, законов, теорий и умения оценивать степень достоверности результатов, полученных с помощью экспериментальных или математических методов исследования;
- усвоение основных физических явлений и законов классической и современной физики, методов физического исследования;
- выработка у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающих студентам в дальнейшем решать инженерные задачи;
- ознакомление студентов с современной научной аппаратурой и выработка у студентов начальных навыков проведения экспериментальных научных исследований физических явлений и оценки погрешностей измерений.

2. Место дисциплины в структуре образовательные программы

Дисциплина «Физика» входит в обязательную часть цикла блока. Основой освоения данной учебной дисциплины является школьный курс физики. Данная дисциплина является предшествующей для следующих дисциплин: информатика, прикладная математика, прикладная механика, электротехника и электроника, гидрогазодинамика, тепломассообмен, автоматизация энергетических установок ТЭС и АЭС и последующей, после высшей математики.

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица1

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине (ЗУВ)
ОПК-2 Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении про-	Общепрофессионал - ИД-1 _{ОПК-2} Применяет математический аппарат исследования функций, линейной алгебры, дифференциального и интегрального исчисления, рядов, дифференциальных уравнений, теории функций комплексного переменного, численных методов. - ИД-1 _{ОПК-2} Демонстрирует понимание физических явлений и	дисциплине (ЗУВ)
фессиональных задач.	применяет законы механики,	владеть: - современной научной аппаратурой.

4. Объём дисциплины и виды учебной работы

Таблица 2

							гаолица		
Вид учебной работы		Все часов/ з		Семестры			Семестры		
		ОФО	ЗФО	2	3	4	2	3	4
		ΟΨΟ	3ΨΟ		ОФО			3ФО	•
Контактная работа (196/5,8	66/1,8	64/1,8	68/1,9	64/1,8	22/0,6	22/0,6	22/0,6	
В том числе:									
Лекции		98/2,7	30/0,8	32/1,0	34/0,5	32/0,5	10/0,3	10/0,3	10/0,3
Практические занят	я	49/1,4	18/0,5	16/0,5	17/0,5	16/0,5	6/0,17	6/0,17	6/0,17
Семинары									
Лабораторные работ	ТЫ	49/1,4	18/0,5	16/0,5	17/0,5	16/0,5	6/0,17	6/0,17	6/0,17
Самостоятельная работа (всего)		200/5,2	330/9,	44/1,1	76/2,0	80/2,1	86/2,4	122/3, 5	122/3, 5
В том числе:									
Курсовая работа (пр	оект)								
Расчетно-графические работы		60/1,4	108/3,	12/0,3	22/0,6	26/0,6	32/0,9	38/1,1	38/1,1
ИТР									
Рефераты									
Доклады									
Презентации									
И (или) другие виды работы:	И (или) другие виды самостоятельной паботы:								
Подготовка к лабора	аторным работам	44/1,22	66/1,8	8/0,22	18/0,5	18/0,5	18/0,5	24/0,7	24/0,7
Подготовка к практи	ическим занятиям	44/1,22	66/1,8	8/0,22	18/0,5	18/0,5	18/0,5	24/0,7	24/0,7
Подготовка к зачету, экзамену		52/1,4	90/2,5	16/0,4 4	18/0,5	18/0,5	18/0,5	36/1,0	36/1,0
Вид отчетности		экзам.	экзам.	зачет	зачет	эк- зам.	зачет	зачет	экзам.
Обиная трупову	ВСЕГО в часах	396	396	108	144	144	108	144	144
Общая трудоем- кость дисциплины	ВСЕГО в зач. единицах	11	11	3	4	4	3	4	4

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 3

№ п/ п	Наименование раздела дисци- плины		екцион- нятий	Часы лабора- торных заня- тий		Часы практических (семинарских) занятий		Всего часов		
		ОФО	ОФО ЗФО		ЗФО	ОФО	ЗФО	ОФО	3ФО	
1.	II семестр Физические основы механики	16	4	8	3	8	3	32	10	
2.	Основы молеку- лярной физики и термодинамики.	16	6	8	3	8	3	32	12	
	Всего:	Всего: 32 10		16	6	16	6	64	22	
3.	III семестр	17	6	8	4	9	4	34	14	

	Электричество и магнетизм.								
4.	Колебания и волны	17	4	9	2	8	2	34	8
	Всего:	34	10	17	6	17	6	68	22
5.	IV семестр Оптика. Квантовая природа излучения. Элементы квантовой физики атомов и молекул. Элементы физики атомного ядра и элементарных частиц	32	10	16	6	16	6	64	22
	ИТОГО:	98	30	49	18	49	18	196	66

5.2. Лекционные занятия

Таблица 4

No	Наименование раздела	Содержание раздела
п/п	дисциплины	
1.	Физические основы механики	2 семестр Элементы кинематики. Динамика материальной точки и посту-
		пательного движения твердого тела. Работа и энергия. Механика твердого тела. Тяготение. Элементы теории поля. Элементы механики жидкостей. Элементы специальной (частной) теории относительности.
2.	Основы молекулярной физики и термодина- мики.	Введение в молекулярную физику и термодинамику. Молекулярно-кинетическая теория идеальных газов. Основы термодинамики. Реальные газы, жидкости и твердые тела.
3.	Электричество и магнетизм. Колебания и волны.	З семестр Электростатика. Постоянный электрический. Электрические токи в металлах, вакууме и газах. Магнитное поле. Электромагнитная индукция. Магнитные свойства вещества. Основы теории. Максвелла для электромагнитного. Механические и электромагнитные колебания. Упругие волны. Электромагнитные волны.
4.	Оптика. Квантовая природа излучения.	4 семестр Элементы геометрической и электронной оптики. Интерференция света. Дифракция света. Взаимодействие электромагнитных волн с веществом. Поляризация света. Квантовая природа излучения
5.	Элементы квантовой физики атомов и моле- кул	Теория атома водорода по Бору. Элементы квантовой механики. Элементы современной физики атомов и молекул.
6	Элементы физики атомного ядра и элементарных частиц	Естественная радиоактивность. Закон радиоактивного распада. Состав ядра. Энергии связи ядра. Изотопы. Ядерные реакции. Модели ядра. Деление ядер. Цепная реакция. Реакция

синтеза, проблема управляемого термоядерного синтеза.
Фундаментальные взаимодействия. Взаимодействие элементар-
ных частиц и законы сохранения.

5.3. Лабораторный практикум

Таблица 5

		таолица 5
№ п/п	№ раздела дисци-	Наименование лабораторных работ
1.		I семестр
1.	1.	Обработка результатов физического эксперимента.
	1.	Определение ускорения свободного падения с помощью математического маятника
		Определение коэффициента трения качения
		Определение момента инерции с помощью маятника Максвелла
		Определение скорости звука методом резонанса звуковых волн Изучение законов вращательного движения с помощью маятника Обербека Определение гравитационной постоянной с помощью математического
		маятника
2.	2.	Определение коэффициента вязкости воздуха методом капилляров
		Определение коэффициента внутреннего трения жидкости по методу Стокса
		Определение отношения теплоемкостей воздуха при постоянном давлении и объеме
		Определение молярной массы воздуха
		Исследование зависимости объема воздуха, протекающего через капилляр, от параметров капилляра
		Изучение движения воздуха в капиллярах
		Изучение вязкости воздуха
3.	3.	ІІ семестр
		Изучение электроизмерительных приборов
		Изучение работы электронного осциллографа
		Определение работы выхода электронов из металла
		Изучение электрических свойств сегнетоэлетриков
		Определение отношения заряда электрона к его массе методом магнетрона.
		Определение периода колебаний струны.
		Изучение магнитного поля соленоида с помошью датчика Холла
		Изучение зависимости сопротивления полупроводника от температуры и
		определение энергии активации
		Изучение зависимости сопротивления металлов от температуры
		Измерение ширины запрещенной зоны полупроводника
4.	4.	III семестр

Линзы и их погрешности
Определение расстояния между щелями в опыте Юнга
Изучение интерференции света
Исследование закона Малюса
Определение фокусных расстояний положительной и отрицательной линз методом Бесселя
Исследование спектров поглощения и пропускания

5.4. Практические занятия

Таблица 6

№ раз де ла	Содержание раздела				
	2 семестр				
1	Элементы кинематики. Динамика материальной точки и поступательного движения твердого тела.				
1	Работа и энергия. Механика твердого тела.				
1	Тяготение. Элементы теории поля. Элементы механики жидкостей. Элементы специальной (частной) теории относительности.				
2	Молекулярно-кинетическая теория идеальных газов.				
2	Основы термодинамики.				
2	Реальные газы, жидкости и твердые тела.				
	3 семестр				
3	Электростатика. Постоянный электрический.				
3	Электрические токи в металлах, вакууме и газах				
3	Магнитное поле. Электромагнитная индукция.				
3	Магнитные свойства вещества. Основы теории Максвелла для электромагнитного				
3	Механические и электромагнитные колебания.				
3	Упругие волны. Электромагнитные волны.				
	4 семестр				
4	Элементы геометрической и электронной оптики. Интерференция света. Дифракция света. Взаимодействие электромагнитных волн с веществом. Поляризация света. Квантовая природа излучения				
5	Теория атома водорода по Бору. Элементы квантовой механики. Элементы современной физики атомов и молекул.				
	Закон радиоактивного распада. Энергии связи ядра. Ядерные реакции.				
6	Деление ядер. Цепная реакция. Реакция синтеза. Взаимодействие элемен-				
	тарных частиц и законы сохранения.				
	Bcero 49				

6. Самостоятельная работа студентов по дисциплине

Таблица 7

№ п/п	№ раз- дела дис- циплины	Темы для самостоятельного изучения
1.	1	Сила как характеристика взаимодействия тел.

2.	4	Уравнение сферической, упругой бегущей, стоячей волны.
3.	1	Закон сохранения импульса и однородность пространства
4.	1	Гироскоп
5.	1	Границы применимости классической механики
6.	1	Релятивистское сохранение длины и замедление времени
7.	1	Качения тел. Особенности движения тела при движении качении.
8.	2	Распределение Ферми-Дирака
9.	2	Особенности агрегатного состояния вещества
10.	2	Фазовые периоды
11.	2	Особенности строения и назначение конденсаторов
12.	3	Поляризация диэлектриков
13.	3	Магнитное поле. Особая форма материи.
14.	3	Диа – пора, ферро-магнетики и их свойства
15.	3	Максвеловская трактовка явлений электромагнитной индукции
16.	5	Особенности проводимости полупроводников
17.	5	Характеристика основных состояний атома водорода
18.	5	Уравнение Шрёдингера для стационарных и нестационарных состояний атома

Для получения глубоких и прочных знаний, твердых навыков и умений, необходима систематическая самостоятельная работа студента. Для выполнения учебного плана студент самостоятельно должен решить определенное количество типовых задач в соответствии со своим вариантом домашнего задания. Аудиторного времени для решения всех типов задач обычно не хватает. Для самостоятельного решения задач прежде, чем приступить к решению задач, нужно изучить (повторить) теоретический материал по теме задачи, разобрать примеры решения задач на эту тему.

Защита выполненного задания проводится либо в форме устного собеседования с преподавателем по решенным задачам.

Учебно-методическое обеспечение для самостоятельной работы студентов.

- 1. Трофимова, Т.И. Курс физики с примерами решения задач в 2-х томах. том 2 / Т.И. Трофимова, А.В. Фирсов. М.: КноРус, 2019. 352 с.
- 2. Трофимова, Т.И. Курс физики: Учебное пособие / Т.И. Трофимова. М.: Академия, 2016. 192 с.
- 3. Трофимова, Т.И. Курс физики. Задачи и решения: Учебное пособие / Т.И. Трофимова. М.: Academia, 2018. 176 с.
- 4. Детлаф, А.А. Курс физики: Учебное пособие / А.А. Детлаф. М.: Academia, 2015. 32 с.

7. Оценочные средства

7.1. Вопросы к рубежным аттестациям

Второй семестр Вопросы к 1 рубежной аттестации

- 1. Материальная точка, радиус-вектор, путь, вектор перемещения, скорости и ускорения.
 - 1. Движение по окружности. Векторы угловой скорости и углового ускорения.
 - 2. Первый закон Ньютона. Инерциальные системы отсчета. Масса, сила.
 - 3. Второй закон Ньютона. Импульс тела. Третий закон Ньютона.
 - 4. Силы трения. Закон изменения и сохранения импульса системы материальных точек.
 - 5. Работа силы, мощность.
 - 6. Кинетическая энергия Потенциальная энергия. Закон сохранения полной механической энергии.
 - 7. Центр масс и закон его движения.
 - 8. Момент инерции. Кинетическая энергия вращающегося твердого тела.
 - 9. Момент силы относительно оси. Уравнение динамики вращательного движения твердого тела
 - 10. Тяготение. Элементы теории поля. Закон всемирного тяготения. Сила тяжести и вес.
 - 11. Невесомость. Поле тяготения и его напряженность. Работа в поле тяготения. Потенциал поля тяготения.
 - 12. Космические скорости. Неинерциальные системы отсчета. Силы инерции
 - 13. Давление в жидкостях и газах. Закон Паскаля.
 - 14. Закон Архимеда.
 - 15. Уравнение неразрывности
 - 16. Уравнение Бернулли.
 - 17. Ламинарное течение. Турбулентное течение. Число Рейнольдса.
 - 18. Вязкость.
 - 19. Преобразования Галилея. Механический принцип относительности. Постулаты специальной теории относительности (СТО).
 - 20. Преобразования Лоренца
 - 21. Релятивистский закон преобразования скоростей.
 - 22. Релятивистский импульс. Релятивистская форма второго закона Ньютона.
 - 23. Закон взаимосвязи массы и энергии.

Образец билета Вариант №1

- 1. Момент силы относительно оси. Уравнение динамики вращательного движения твердого тела.
- 2 Ламинарное течение. Турбулентное течение. Число Рейнольдса.

Вопросы ко 2 рубежной аттестации

- 1. Статистическая физика и термодинамика.
- 2. Масса и размеры молекул.
- 3. Термодинамические параметры. Идеальный газ.
- 4. Уравнение состояния идеального газа. Закон Дальтона
- 5. Опытные газовые законы.

- 6. Хаотичность молекулярного движения. Средняя скорость молекул.
- 7. Понятие абсолютной температуры и основные положения МКТ.
- 8. Закон Максвелла о распределении молекул идеального газа по скоростям.
- 9. Барометрическая формула.
- 10. Среднее число столкновений и средняя длина свободного пробега молекул.
- 11. Явления переноса.
- 12. Предмет термодинамики. Основные определения. Внутренняя энергия системы. Количество теплоты.
- 13. Первое начало термодинамики.
- 14. Теплоемкость газа. Физический смысл универсальной газовой постоянной.
- 15. Применение первого начала термодинамики к изопроцессам.
- 16. Адиабатный процесс. Политропный процесс.
- 17. Круговой процесс. Обратимые и необратимые процессы.
- 18.Энтропия.
- 19.Второе начало термодинамики.
- 20. Цикл Карно и его КПД для идеального газа.
- 21. Уравнение Ван-дер-Ваальса.
- 22.Изотермы Ван-дер-Ваальса.
- 23.Внутренняя энергия реального газа.
- 24. Эффект Джоуля-Томсона.
- 25. Поверхностное натяжение. Смачивание.
- 26.Испарение и плавление

Образец билета Вариант №1

- 1. Понятие абсолютной температуры и основные положения МКТ.
- 2. Второе начало термодинамики

Третий семестр Вопросы к 1 рубежной аттестации

- 1. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 2. Закон Кулона.
- 3. Электрическое поле. Напряженность электрического поля.

Силовые линии магнитного поля.

- 4. Работа поля при перемещении заряда.
- 5. Потенциал, разность потенциалов.
- 6. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- 7. Поляризация диэлектриков. Напряженность поля в диэлектрике.
- 8. Электроемкость. Конденсаторы. Применение конденсаторов.
- 9. Энергия электростатического поля.
- 10. Электрический ток. Сила тока. Постоянный ток.
- 11. Закон Ома для участка цепи. Сопротивление проводника.
- 12. Типы соединения проводников.
- 13. Стронние силы. ЭДС. Закон Ома для полной цепи.
- 14. Закон Джоуля-Ленца. Работа тока. Мощность тока.
- 15. Электропроводность твердых тел. Природа тока в металлах.
- 16. Магнитное поле.

Силовые линии магнитного поля. Напряженность.

- 17. Закон Био- Савара-Лапласа.
- 18.Сила Ампера. Взаимодействие параллельных токов.
- 19.Сила Лоренца.

Вариант №1

- 1. Работа поля при перемещении заряда.
- 2. Закон Ома для участка цепи. Сопротивление проводника.

Вопросы ко второй рубежной аттестации

- 1. Вещество в магнитном поле. Парамагнетики, диамагнетики.
- 2. Эффект Холла.
- 3. Циркуляция вектора В магнитные поля в вакууме.
- 4. Работа по перемещению проводника и контура с током в магнитном поле.
- 5. Электромагнитная индукция. Магнитный поток.
- 6.Закон электромагнитной индукции и правило Лоренца.
- 7. Самоиндукция. ЭДС- самоиндукции.
- 8.Индуктивность проводника и взаимная индуктивность. Энергия магнитного поля.
- 9. Электромагнитное поле.
- 10. Ток смещения Вихревое поле.
- 11. Переменный ток. Действующее значения напряжения и силы тока.
- 12. Индуктивность и емкость в цепи переменного тока.
- 13. Закон Ома для цепи переменного тока.
- 14. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.
- 15.Механические гармонические колебания. Кинетическая и потенциальная энергии гармонических колебаний.
- 16. Гармонический осциллятор. Пружинный маятник. Физический маятник. Математический маятник.
- 17. Механические волны. Продольные и поперечные волны. Длина волны.
- 18. Колебательный контур. Формула Томсона. Собственные колебания.
- 19. Свободные и вынужденные колебания. Электрические автоколебания.
- 20. Резонанс токов и напряжений.
- 21. Характеристики колебания процесса, период, частота, амплитуда, фаза колебаний.
- 22. Электромагнитные волны. Волновые уравнение.
- 23. Энергия электромагнитных волн. Опыты Герца.
- 24. Шкала электромагнитных волн.

Образец билета Вариант №1

- 1. Электромагнитное поле.
- 2. Ток смещения Вихревое поле.

Четвертый семестр. Вопросы к 1 рубежной аттестации

- 1. Законы геометрической оптики. Полное отражение света.
- 2. Зеркала. Тонкие линзы. Формула линзы
- 3. Фотометрия. Основные фотометрические величины и их единицы.
- 4. Явление интерференции света. Интерференция в тонких пленках. Кольца Ньютона.
- 5. Явление дифракции. Принцип Гюйгенса Френеля
- 6. Метод зон Френеля. Дифракция Френеля.
- 7. Дифракции Фраунгофера на одной щели и на дифракционной решетки.
- 8. Дифракция рентгеновских лучей на кристаллах.
- 9. Поляризация света. Поляризаторы и анализаторы.
- 10. Анализ поляризованного света. Вращение плоскости поляризации.
- 11. Явление дисперсии света.

- 12. Поглощение света.
- 13. Эффект Доплера.
- 14. Эффект Вавилова Черенкова.
- 15. Тепловое излучение
- 16. Законы равновесного теплового излучения.
- 17. Гипотеза Планка. Формула Планка
- 18. Квант излучения. Энергия кванта излучения.
- 19. Фотоэлектрический эффект. Законы Столетова.
- 20. Уравнение Эйнштейна для внешнего фотоэффекта.

Образец билета Вариант №1

- 1. Явление дифракции. Принцип Гюйгенса Френеля.
- 2. Эффект Доплера.

Вопросы ко 2 рубежной аттестации

- 1. Масса и импульс фотона. Давление света.
- 2. Эффект Комптона.
- 3. Волна де- Бройля.
- 4. Соотношения неопределенностей. Волновая функция.
- 5. Уравнение Шредингера.
- 6. Уравнение Шредингера для стационарных состояний.
- 7. Туннельный эффект.
- 8. Потенциальный ящик.
- 9. Линейный гармонический осциллятор.
- 10. Двойственность представлений о природе света. Корпускулярно- волновой дуализм. Модель атома Томсона и Резерфорда.
- 11Линейчатые спектры атомов. Спектр атома водорода.
- 12. Опыты Франка и Герца.
- 13. Магнитный момент электрона.
- 14. Принцип Паули. Электронные оболочки. Периодическая система элементов Менлелеева.
- 15. Спектры многоэлектронных атомов. Характеристические рентгеновские, спектры.
- 16. Закон Мозли. Водородоподобные спектры.
- 17. Природа химической связи. Молекулярные спектры.
- 19. Естественная радиоактивность. Закон радиоактивного распада.
- 20. Состав ядра. Нуклоны. Заряд и массовое число ядра. Энергии и связи ядра.
- 21. Изотопы, Искусственные превращения ядер. а- и В-распада, у-излучение. Ядерные реакции.
- 22. Оболочечная и капельная модели ядра.
- 23. Деление ядер. Цепная реакция. Ядерные реакции на тепловых и быстрых нейтронах. Реакция синтеза, проблема управляемого термоядерного синтеза.
- 24. Фундаментальные взаимодействия. Классификация элементарных частиц.
- 25. Взаимодействие элементарных частиц и законы сохранения. Частицы и античастицы.
- 26. Барионы и мезоны. Резонансы Космические лучи.
- 27. Фундаментальные частицы. Частицы-участники и частицы-переносчики взаимодействий.

Образец билета Вариант №1

1. Уравнение Шредингера.

2. Опыты Франка и Герца.

7.2. Вопросы к экзаменам и зачету

Вопросы к экзамену 2 семестра

- 1. Материальная точка, радиус-вектор, путь, вектор перемещения, скорость и ускорение. Векторы угловой скорости и углового ускорения.
- 2. Масса, сила. Первый закон Ньютона. Инерциальные системы отсчета.
- 3. Второй закон Ньютона. Импульс тела. Третий закон Ньютона.
- 4. Силы трения. Закон изменения и сохранения импульса системы материальных точек.
- 5. Работа силы, мощность.
- 6. Кинетическая энергия. Потенциальная энергия. Закон сохранения полной механической энергии.
- 7. Центр масс и закон его движения.
- 8. Момент инерции. Кинетическая энергия вращающегося твердого тела.
- 9. Момент силы относительно оси. Уравнение динамики вращательного движения твердого тела.
- 10. Тяготение. Элементы теории поля. Закон всемирного тяготения. Сила тяжести и вес.
- 11. Невесомость. Поле тяготения и его напряженность. Работа в поле тяготения. Потенциал поля тяготения. Космические скорости. Неинерциальные системы отсчета. Силы инерции
- 12. Давление в жидкостях и газах.
- 13. Закон Архимеда.
- 14. Уравнение неразрывности струи.
- 15. Уравнение Бернулли.
- 16. Ламинарное течение.
- 17. Турбулентное течение. Число Рейнольдса.
- 18. Вязкость.
- 19. Преобразования Галилея. Механический принцип относительности.
- 20. Постулаты специальной теории относительности (СТО).
- 21. Следствия из преобразований Лоренца. Одновременность событий в разных системах отсчета.
- 22. Преобразования Лоренца.
- 23. Следствия из преобразований Лоренца. Длительность событий в разных системах отсчета.
- 24. Следствия из преобразований Лоренца. Длина тел в разных системах отсчета.
- 25. Релятивистский закон преобразования скоростей.
- 26. Интервал между событиями.
- 27. Релятивистский импульс. Релятивистская форма второго закона Ньютона.
- 28. Закон взаимосвязи массы и энергии.
- 29. Статистическая физика и термодинамика.
- 30. Масса и размеры молекул.
- 31. Термодинамические параметры. Идеальный газ.
- 32. Основные положения МКТ.
- 33. Уравнение состояния идеального газа. Закон Дальтона
- 34. Опытные газовые законы.
- 35. Хаотичность молекулярного движения. Средняя скорость молекул
- 36. Основное уравнение кинетической теории газов.
- 37. Абсолютная температура.
- 38. Закон Максвелла о распределении молекул идеального газа по скоростям.

- 39. Барометрическая формула.
- 40. Среднее число столкновений и средняя длина свободного пробега молекул.
- 41. Явления переноса.
- 42. Предмет термодинамики. Основные определения.
- 43. Внутренняя энергия системы. Количество теплоты.
- 44. Работа и количество теплоты.
- 45. Первое начало термодинамики.
- 46. Теплоемкость газа. Физический смысл универсальной газовой постоянной.
- 47. Применение первого начала термодинамики к изопроцессам.
- 48. Адиабатный процесс. Политропный процесс.
- 49. Круговой процесс. Обратимый и необратимый процессы.
- 50. Энтропия.
- 51. Второе начало термодинамики.
- 52. Цикл Карно и его КПД для идеального газа.
- 53. Уравнение Ван-дер-Ваальса. Изотермы реального газа.
- 54. Внутренняя энергия реального газа и его теплоемкость. Эффект Джоуля—Томсона.
- 55. Уравнение Джоуля—Томсона. Испарение и плавление.

Образец билета

Грозненский государственный нефтяной технический университет Экзаменационный билет № 1 лисшиплина: «Физика»

1.	Описание	движения	тел.	Траектория,	перемещение	и пройденны	й путь
_			_				

2	V	noniioiiio	DOLL HOP	Роонго	ппа	реальных газов.
∠.	y	равнение	ран-дер	-Баальса	для	рсальных газов.

Заведующий кафедрой «Физика»		_ Успажиев Р.Р.
Доцент	Успажиев Р.Т.	

Вопросы к зачету. 3 семестра

- 1. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 2. Взамодействие зарядов. Закон Кулона.
- 3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. Силовые линии магнитного поля.
- 4. Теорема Гаусса для электростатического поля в вакууме.
- 5. Работа поля при перемещении заряда. Потенциал, разность потенциалов.
- 6. Напряженность как градиент потенциала.
- 7. Диэлектрики и их поляризация. Напряженность поля в диэлектрике.
- 8. Проводники в электростатическом поле.
- 9. Конденсаторы. Электроемкость. Применение конденсаторов.
- 10. Энергия электростатического поля.
- 11. Электрический ток. Сила тока. Постоянный ток.
- 12. Закон Ома для участка цепи. Сопротивление проводников.
- 13. Типы соединения проводников.
- 14. Стронние силы. ЭДС. Закон Ома для полной цепи.
- 15. Закон Джоуля Ленца. Работа тока. Мощность тока.
- 16. Электропроводность твердых тел. Природа тока в металлах.
- 17. Магнитное поле. Силовые линии магнитного поля. Напряженность.
- 18. Закон Био-Савара-Лапласа.
- 19. Взаимодействие токов. Сила Ампера.
- 20.Сила Лоренца.
- 21. Эффект Холла.

- 22. Циркуляция вектора В магнитные поля в вакууме.
- 23. Теорема Гаусса для поля вектора В.
- 24. Работа по перемещению проводника и контура с током в магнитном поле.
- 20. Вещество в магнитном поле. Магнитная Проницаемость. Парамагнетики, диамагнетики.
- 21. Природа ферромагнетизма. Постоянные магниты.
- 22. Электромагнитная индукция. Магнитный поток.
- 23. Закон электромагнитной индукции и правило Лоренца.
- 24.Самоиндукция. ЭДС самоиндукций.
- 25.Индуктивность проводника и взаимная индуктивность. Энергия магнитного поля.
- 26. Электромагнитное поле. Ток смещения. Вихревое поле.
- 27. Переменный ток. Действующее значения напряжения и силы тока.
- 28.Индуктивность и емкость в цепи переменного тока.
- 29. Закон Ома для цепи переменного тока.
- 30. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.
- 31. Механические гармонические колебания. Кинетическая и потенциальная энергии гармонических колебаний.
- 32. Гармонический осциллятор. Пружинный маятник. Физический маятник. Математический маятник.
- 33. Механические волны. Продольные и поперечные волны. Длина волны.
- 34. Колебательный контур. Формула Томсона. Собственные колебания.
- 35. Свободные и вынужденные колебания. Электрические автоколебания.
- 36. Резонанс токов и напряжений.
- 37. Характеристики колебания процесса, период, частота, амплитуда, фаза колебаний.
- 38.Электромагнитные волны. Волновые уравнение.
- 39. Свойства электромагнитных волн. Опыты Герца.
- 40.Шкала электромагнитных волн.

Образец билета Вариант №1

- 1 Теорема Гаусса для электростатического поля в вакууме.
- 2. Проводники в электростатическом поле.

Вопросы к экзамену 4 семестра

- 1. Законы геометрической оптики. Полное отражение света.
- 4. Тонкие линзы. Формула линзы.
- 5. Фотометрия. Основные фотометрические величины и их единицы.
- 6. Явление интерференции света. Временная и пространственная когерентность. Интерференция в тонких пленках. Кольца Ньютона.
- 7. Явление дифракции. Принцип Гюйгенса Френеля
- 8. Метод зон Френеля. Дифракция Френеля.
- 9. Дифракции Фраунгофера на одной щели и на дифракционной решетки.
- 10. Дифракционная решетка.
- 11. Дифракция рентгеновских лучей на кристаллах. Условие Вульфа Брэгга.
- 12. Поляризация света. Поляризаторы и анализаторы.
- Двойное лучепреломление.
- 13. Анализ поляризованного света. Вращение плоскости поляризации.
- 14. Явление дисперсии света. Нормальная и аномальная дисперсия.
- 15. Абсолютно черное тело.
- 16. Законы равновесного теплового излучения.
- 16. Гипотеза Планка. Формула Планка

- 18. Квант излучения. Энергия кванта излучения.
- 19. Фотоэлектрический эффект. Фотоны.
- 20. Уравнение Эйнштейна для внешнего фотоэффекта.
- 21. Давление света с квантовой точки зрения.
- 22. Эффект Комптона.
- 23. Волна де- Бройля. Соотношения неопределенностей.
- 24. Волновая функция.
- 25. Уравнение Шредингера для стационарных состояний.
- 26. Туннельный эффект.
- 27. Потенциальный ящик.
- 28. Линейный гармонический осциллятор.
- 29. Двойственность представлений о природе света. Корпускулярно- волновой дуализм.
- 30. Модель атома Томсона и Резерфорда
- 31. Линейчатые спектры атомов. Спектр атома водорода.
- 32. Магнитный момент электрона.
- 33. Принцип Паули. Электронные оболочки. Периодическая система элементов Менделеева.
- 34. Спектры многоэлектронных атомов. Характеристические рентгеновские, спектры.
- 35. Закон Мозли. Водородоподобные спектры.
- 36. Природа химической связи. Молекулярные спектры. Комбинационное рассеяние света.
- 37. Естественная радиоактивность. Закон радиоактивного распада.
- 38. Состав ядра. Нуклоны. Заряд и массовое число ядра. Энергии и связи ядра.
- 39. Изотопы, Искусственные превращения ядер. *а-*и В-распада, у-излучение. Ядерные реакции.
- 40. Оболочечная и капельная модели ядра.
- 41. Деление ядер. Цепная реакция.
- 42. Ядерные реакции на тепловых и быстрых нейтронах. Реакция синтеза.
- 43. Фундаментальные взаимодействия. Классификация элементарных частиц.
- 44. Взаимодействие элементарных частиц и законы сохранения. Частицы и античастицы.
- 45. Барионы и мезоны. Космические лучи.
- 46. Фундаментальные частицы. Частицы-участники и частицы-переносчики взаимодействий.

Образец билета к экзамену.

Грозненский государственный нефтяной технический университет Экзаменационный билет № 1 дисциплина: «Физика»

1. Тонкие линзы. Формула линзы.		
2. Волновая функция.		
Заведующий кафедрой «Физика»		_ Успажиев Р.Р.
Доцент	Успажиев Р.Т.	

7.3. Текущий контроль

Контрольная работа №1

- 1. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением ε . Определить тангенциальное ускорение α_{τ} точки, если известно, что за время t = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение $\alpha_n = 2,7$ м/с².
- 2. Шар массой $m_1 = 2$ кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m_2 большего шара. Удар считать абсолютно упругим, прямым, центральным.
- 3. Какая работа A должна быть совершена при поднятии с земли материалов для постройки цилиндрической трубы высотой h=40 м, наружным диаметром D=3.0 м и внутренним диаметром d=2.0 м? Плотность материала ρ принять равной $2.8 \cdot 10^3$ кг/м³.
- 4. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами $m_1 = 0,2$ кг и $m_2 = 0,3$ кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг, а его ось движется вертикально вверх с ускорением $\alpha = 2$ м/с²? Силами трения и проскальзывания нити по блоку пренебречь.
- 5. Однородный стержень длиной $\ell=1,0$ м и массой M=0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на $\frac{2}{3}$ ℓ , абсолютно упруго ударяет пуля массой m=5 кг, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол $\alpha=60^{\circ}$. Определить скорость пули.
- 6. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять, что радиус R_3 Земли в 6 раз меньше веса тела на Земле.

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалы оценивания.

Планируемые результаты	Критерии оценивания результатов обучения				Наименование оценочного средства			
освоения компетенции	менее 41 баллов (неудо- влетворительно)	41-60 баллов (удовлетворительно)	61-80 баллов (хорошо)	81-100 баллов (отлично)				
ОПК-2 Способен применять	ОПК-2 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и эксперименталь-							
		сследования при решении		r ⁻				
Знать: основные физические явления, фундаментальные понятия и законы классической и современной физики.		Неполные знания	Сформированные, но содержащие отдельные пробелы знания	Сформированные систематические знания	Экзамен, фронтальный опрос, текущий опрос, лабораторная работа, практические задачи, задания для контрольной работы.			
Уметь: применять полученные знания по физике при изучении других дисциплин, выделять конкретное физическое содержание в прикладных задачах профессиональной деятельности.	Частичные умения	Неполные умения	Умения полные, до- пускаются небольшие ошибки					
Владеть: современной научной аппаратурой.	Частичное владение навыками	Несистематическое при- менение навыков	В систематическом применении навыков допускаются пробелы знаний	i -				
	Шифр ко	омпетенции: расшифровка к	омпетенции согласно ФГО	OC BO				
Знать: воспроизводить термины, конкретные факты,	Фрагментарные знания	Неполные знания	Сформированные, но содержащие отдельные пробелы знания	Сформированные систематические знания	Зачет, фронтальный опрос, текущий опрос, ла-			

методы и процедуры, основные понятия, правила и принципы					бораторная работа, практические задачи, задания для контрольной работы.
Уметь: использовать изученный материал в нужных ситуациях, например, применять идеи и конценции к решению проблем.	Частичные умения	Неполные умения	Умения полные, до- пускаются небольшие ошибки	Сформированные умения	для контрольной расоты.
Владеть: способностью	Частичное владение	Несистематическое при-	В систематическом	Успешное и системати-	
комбинировать элементы,	навыками	менение навыков	применении навыков	ческое применение	
итобы получить целое, об-			допускаются пробелы	навыков	
ладающее новизной.			знаний		

. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся созданы фонды оценочных средств, адаптированные для инвалидов и лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе. Форма проведения текущей аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). При тестировании для слабовидящих студентов используются фонды оценочных средств с укрупненным шрифтом. На экзамен приглашается сопровождающий, который обеспечивает техническое сопровождение студенту. При необходимости студенту-инвалиду предоставляется дополнительное время для подготовки ответа на экзамене (или зачете). Обучающиеся с ограниченными возможностями здоровья и обучающиеся инвалиды обеспечиваются печатными и электронными образовательными ресурсами (программы, учебные пособия для самостоятельной работы и т.д.) в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- 1) для инвалидов и лиц с ограниченными возможностями здоровья по зрению:
- для слепых: задания для выполнения на семинарах и практических занятиях оформляются рельефно-точечным шрифтом Брайля или в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением для слепых, либо зачитываются ассистентом; письменные задания выполняются на бумаге рельефно-точечным шрифтом Брайля или на компьютере со специализированным программным обеспечением для слепых либо надиктовываются ассистенту; обучающимся для выполнения задания при необходимости предоставляется комплект письменных принадлежностей и бумага для письма рельефно-точечным шрифтом Брайля, компьютер со специализированным программным обеспечением для слепых;
- для слабовидящих: обеспечивается индивидуальное равномерное освещение не менее 300 люкс; обучающимся для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; задания для выполнения заданий оформляются увеличенным шрифтом;
 - 2) для инвалидов и лиц с ограниченными возможностями здоровья по слуху:

- для глухих и слабослышащих: обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости обучающимся предоставляется звукоусиливающая аппаратура индивидуального пользования; предоставляются услуги сурдопереводчика;
- для слепоглухих допускается присутствие ассистента, оказывающего услуги тифлосурдопереводчика (помимо требований, выполняемых соответственно для слепых и глухих);
- 3) для лиц с тяжелыми нарушениями речи, глухих, слабослышащих лекции и семинары, проводимые в устной форме, проводятся в письменной форме;
- 4) для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата:
- для лиц с нарушениями опорно-двигательного аппарата, нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей: письменные задания выполняются на компьютере со специализированным программным обеспечением или надиктовываются ассистенту; выполнение заданий (тестов, контрольных работ), проводимые в письменной форме, проводятся в устной форме путем опроса, беседы с обучающимся.

9. Учебно-методическое и информационное обеспечение дисциплины

- 1. Трофимова, Т.И. Курс физики с примерами решения задач в 2-х томах. том 2 / Т.И. Трофимова, А.В. Фирсов. М.: КноРус, 2019. 352 с.
- 2. Трофимова, Т.И. Курс физики: Учебное пособие / Т.И. Трофимова. М.: Академия, 2016. 192 с.
- 3. Трофимова, Т.И. Курс физики. Задачи и решения: Учебное пособие / Т.И. Трофимова. М.: Academia, 2018. 176 с.
- 4. Детлаф, А.А. Курс физики: Учебное пособие / А.А. Детлаф. М.: Academia, 2015. 32 с.
- 5. Лоренц, Х.А. Курс физики. В 2 т. / Х.А. Лоренц. М.: Ленанд, 2016. 824 с.
- 6. Методические указания (рекомендации) к выполнению лабораторных работ, к решению задач.

9.2. Методические указания по освоению дисциплины. (Приложение).

10. Материально-техническое обеспечение дисциплины

No	Наименование специализированных аудиторий и лабораторий
п/п	
11/11	
1	Аудитория с мультимедийным оборудованием для проведения лекционных за-
	нятий.
2	Описание лабораторных работ для натурного исследования.

- 1. Лекционные демонстрации по разделам курса физики
- 2. Учебные лаборатории
- № 0-16 «Механика и молекулярная физика»
- № 0-23 «Электричество и магнетизм»
- № 0-13 «Оптика»

Методические указания по освоению дисциплины«Физика»

1. Методические указания для обучающихся по планированию и организации времени, необходимого для освоения дисциплины.

Изучение рекомендуется начать с ознакомления с рабочей программой дисциплины, ее структурой и содержанием разделов (модулей), фондом оценочных средств, ознакомиться с учебно-методическим и информационным обеспечением дисциплины.

Дисциплина «Физика» состоит из модулей связанных между собою тем, обеспечивающих последовательное изучение материала.

Обучение по дисциплине «Физика» осуществляется в следующих формах:

- 1. Аудиторные занятия (лекции, практические и лабораторные занятия).
- 2. Самостоятельная работа студента (подготовка к лекциям, практическим, лабораторным занятиям и индивидуальная консультация с преподавателем).

Учебный материал структурирован и изучение дисциплины производится втематической последовательности. Каждому <u>практическому занятию</u> и самостоятельному изучению материала предшествует лекция по данной теме. Обучающиеся самостоятельно проводят предварительную подготовку к занятию, принимают активное и творческое участие в обсуждении теоретических вопросов, разборе проблемных ситуаций и поисков путей их решения. Многие проблемы, изучаемые в курсе, носят дискуссионный характер, что предполагает интерактивный характер проведения занятий на конкретных примерах.

Описание последовательности действий обучающегося:

При изучении курса следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий:

- 1. После окончания учебных занятий для закрепления материала просмотреть и обдумать текст лекции, прослушанной сегодня, разобрать рассмотренные примеры (10 15 минут).
- 2. При подготовке к лекции следующего дня повторить текст предыдущей лекции, подумать о том, какая может быть следующая тема (10 15 минут).
 - 3. В течение недели выбрать время для работы с литературой в библиотеке (по 1 часу).
- 4. При подготовке к <u>практическому занятию</u> повторить основные понятия по теме, изучить примеры. Решая конкретную ситуацию, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить 1 2 практические ситуации (лаб. работы).

2. Методические указания по работе обучающихся во время проведения лекций.

Лекции дают обучающимся систематизированные знания по дисциплине, концентрируют их внимание на наиболее сложных и важных вопросах. Лекции обычно излагаются в традиционном или в проблемном стиле. Для студентов в большинстве случаев в проблемном стиле. Проблемный стиль позволяет стимулировать активную познавательную деятельность обучающихся и их интерес к дисциплине, формироватьтворческое мышление, прибегать к противопоставлениям и сравнениям, делать обобщения, активизировать внимание обучающихся путем постановки проблемных вопросов, поощрять дискуссию.

Во время лекционных занятий рекомендуется вести конспектирование учебного материала, обращать внимание на формулировки и категории, раскрывающие суть того или иного явления, или процессов, выводы и практические рекомендации.

Конспект лекции лучше подразделять на пункты, соблюдая красную строку. Этому в большой степени будут способствовать вопросы плана лекции, предложенные преподавателям. Следует обращать внимание на акценты, выводы, которые делает преподаватель, отмечая наиболее важные моменты в лекционном материале замечаниями

«важно», «хорошо запомнить» и т.п. Можно делать это и с помощью разноцветных маркеров или ручек, подчеркивая термины и определения.

Целесообразно разработать собственную систему сокращений, аббревиатур и символов. Однако при дальнейшей работе с конспектом символы лучше заменить обычными словами для быстрого зрительного восприятия текста.

Работая над конспектом лекций, необходимо использовать не только основную литературу, но и ту литературу, которую дополнительно рекомендовал преподаватель. Именно такая серьезная, кропотливая работа с лекционным материалом позволит глубоко овладеть теоретическим материалом.

Тематика лекций дается в рабочей программе дисциплины.

3. Методические указания обучающимся по подготовке к практическим/семинарским занятиям.

На практических занятиях приветствуется активное участие в обсуждении конкретных ситуаций, способность на основе полученных знаний находить наиболее эффективные решения поставленных проблем, уметь находить полезный дополнительныйматериал по тематике занятий.

Студенту рекомендуется следующая схема подготовки к практическому занятию:

- 1. Ознакомление с планом <u>практического</u> занятия, который отражает содержание предложенной темы;
 - 2. Проработать конспект лекций;
 - 3. Прочитать основную и дополнительную литературу.

В процессе подготовки к практическим занятиям, необходимо обратить особоевнимание на самостоятельное изучение рекомендованной литературы. При всей полноте конспектирования лекции в ней невозможно изложить весь материал из-за лимита аудиторных часов. Поэтому самостоятельная работа с учебниками, учебными пособиями, научной, справочной литературой, материалами периодических изданий и Интернета является наиболее эффективным методом получения дополнительных знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у студентов отношение кконкретной проблеме. Все новые понятия по изучаемой теме необходимо выучить наизусть и внести в глоссарий, который целесообразно вести с самого начала изучения курса;

- 4. Ответить на вопросы плана практического занятия;
- 5. Выполнить домашнее задание;
- 6. Проработать задачи;
- 7. При затруднениях сформулировать вопросы к преподавателю.

Результат такой работы должен проявиться в способности студента свободно ответить на теоретические вопросы практикума, выступать и участвовать в коллективном обсуждении вопросов изучаемой темы, правильно выполнять практические задания и иные задания, которые даются в фонде оценочных средств дисциплины.

4. Методические указания обучающимся по организации самостоятельной работы.

Цель организации самостоятельной работы по дисциплине «физика» - это углубление и расширение знаний в области технических специальностей; формирование навыка и интереса к самостоятельной познавательной деятельности.

Самостоятельная работа обучающихся является важнейшим видом освоениясодержания дисциплины, подготовки к практическим занятиям и к контрольной работе. Сюда же относятся и самостоятельное углубленное изучение тем дисциплины. Самостоятельная работа представляет собой постоянно действующую систему, основу образовательного процесса и носит исследовательский характер, что послужит в будущем основанием для написания выпускной квалификационной работы, практического применения полученных знаний

Организация самостоятельной работы обучающихся ориентируется на активные методы

овладения знаниями, развитие творческих способностей, переход от поточного к индивидуализированному обучению, с учетом потребностей и возможностей личности.

Правильная организация самостоятельных учебных занятий, их систематичность, целесообразное планирование рабочего времени позволяет студентам развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивать высокий уровень успеваемости в период обучения, получить навыки повышения профессионального уровня.

Подготовка к практическому занятию включает, кроме проработки конспекта и презентации лекции, поиск литературы (по рекомендованным спискам и самостоятельно), подготовку заготовок для выступлений по вопросам, выносимым для обсуждения по конкретной теме. Такие заготовки могут включать цитаты, факты, сопоставлениеразличных позиций, собственные мысли. Если проблема заинтересовала обучающегося, он может подготовить реферат и выступить с ним на практическом занятии. Практическоезанятие - это, прежде всего, дискуссия, обсуждение конкретной ситуации, то есть предполагает умение внимательно слушать членов малой группы и модератора, а также стараться высказать свое мнение, высказывать собственные идеи и предложения, уточнятьи задавать вопросы коллегам по обсуждению.

При подготовке к контрольной работе обучающийся должен повторять пройденный материал в строгом соответствии с учебной программой, используя конспект лекций и литературу, рекомендованную преподавателем. При необходимости можно обратиться за консультацией и методической помощью к преподавателю.

Самостоятельная работа реализуется:

- непосредственно в процессе аудиторных занятий на лекциях, практических занятиях;
- в контакте с преподавателем вне рамок расписания на консультациях по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей, при выполнении индивидуальных заданий и т.д.
- в библиотеке, дома, на кафедре при выполнении обучающимся учебных и практических задач.

Виды СРС и критерии оценок

(по балльно-рейтинговой системе ГГНТУ, СРС оценивается в 15 баллов)

- 1. Контрольная работа
- 2. Участие в мероприятиях

Темы для самостоятельной работы прописаны в рабочей программе дисциплины. Эффективным средством осуществления обучающимся самостоятельной работыявляется электронная информационно-образовательная среда университета, которая обеспечивает доступ к учебным планам, рабочим программам дисциплин (модулей), практик, к изданиям электронных библиотечных систем.

5. Методические рекомендации по организации и проведению лабораторных занятий.

Лабораторное занятие -это основной вид учебных занятий, направленный на экспериментальное подтверждение теоретических положений. В процессе лабораторного занятия студенты выполняют одну или несколько лабораторных работ (заданий) под руководством преподавателя в соответствии с изучаемым содержанием учебного материала. Выполнение студентами лабораторных работ направлено на: обобщение, систематизацию, углубление теоретических знаний по конкретным темам учебной дисциплины; формирование умений применять полученные знания в практической деятельности; развитие аналитических, проектировочных, конструктивных умений; выработку самостоятельности, ответственности и творческой инициативы. Учебная дисциплина, по которой планируется проведение лабораторных занятий и их объемы, определяются рабочим учебным планом по специальности.

При проведении лабораторных занятий учебная группа может делиться на подгруппы численностью не менее 8 человек, а в случае индивидуальной подготовки не менее 2 человек. Целью лабораторных занятий является экспериментальное подтверждение и проверка существующих теоретических положений, поэтому преимущественное значение они имеют при изучении дисциплин общепрофессионального и специального циклов. Основными целями лабораторных занятий являются: установление и подтверждение закономерностей; проверка формул, методик расчета; установление свойств, их качественных и количественных характеристик; ознакомление с методиками проведения экспериментов; наблюдение за развитием явлений, процессов и др.

Студенты пользуются методическими указаниями, в которых указаны: цель работы, пояснения (теория, основные характеристики), оборудование, аппаратура, материалы и их характеристики, порядок выполнения работы, таблицы, выводы (без формулировок), контрольные вопросы, учебная и специальная литература. Результаты выполнения лабораторного задания (работы) оформляются студентами в виде отчета.

Составитель:

Доцент кафедры «Физика»

aprecion

Успажиев Р.Т.

СОГЛАСОВАНО:

Заведующий кафедрой «Физика»

gleccon

Успажиев Р.Т.

Заведующий кафедрой

«Теплотехника и гидравлика»

a up

Турлуев Р.А.-В.

Директор ДУМР

Aprel -

Магомаева М.А.